如图1,已知直线y=2x(即直线l
1)和直线y=-
x+4(即直线l
2),l
2与x轴相交于点A.点P从原点O出发,向x轴的正方向作匀速运动,速度为每秒1个单位,同时点Q从A点出发,向x轴的负方向作匀速运动,速度为每秒2个单位.设运动了t秒.
(1)求这时点P、Q的坐标(用t表示).
(2)过点P、Q分别作x轴的垂线,与l
1、l
2分别相交于点O
1、O
2(如图1).以O
1为圆心、O
1P为半径的圆与以O
2为圆心、O
2Q为半径的圆能否相切?若能,求出t值;若不能,说明理由.(同学可在图2中画草图)
考点分析:
相关试题推荐
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
查看答案
如图,已知直线y=-
x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.
(1)直接写出点C和点D的坐标,C(______)、D(______);
(2)求出过A,D,C三点的抛物线的解析式.
查看答案
如图,将腰长为
的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax
2+ax-2上,点C的坐标为(-1,0).
(1)点A的坐标为______,点B的坐标为______;
(2)抛物线的关系式为______,其顶点坐标为______;
(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C′的位置.请判断点B′、C′是否在(2)中的抛物线上,并说明理由.
查看答案
如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.
查看答案
观察与思考:阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作 AD⊥BC于D(如图1),则sinB=
,sinC=
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
.同理有:
,
,所以
即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.
(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=______;AC=______
查看答案