满分5 > 初中数学试题 >

方程x2+4x=2的正根为( ) A.2- B.2+ C.-2- D.-2+

方程x2+4x=2的正根为( )
A.2-manfen5.com 满分网
B.2+manfen5.com 满分网
C.-2-manfen5.com 满分网
D.-2+manfen5.com 满分网
本题采用配方法解题,将方程左边配成完全平方式,再求方程的解. 【解析】 ∵x2+4x=2, ∴(x+2)2=6, ∴x1=-2+,x2=-2-; ∴方程x2+4x=2的正根为-2+. 故本题选D.
复制答案
考点分析:
相关试题推荐
E是正方形ABCD内一点,且△EAB是等边三角形,则∠ADE的度数是( )manfen5.com 满分网
A.70°
B.72.5°
C.75°
D.77.5°
查看答案
如图,在平面直角坐标系xOy中,点B的坐标为(0,2),点D在x轴的正半轴上,∠ODB=30°,OE为△BOD的中线,过B、E两点的抛物线manfen5.com 满分网与x轴相交于A、F两点(A在F的左侧).
(1)求抛物线的解析式;
(2)等边△OMN的顶点M、N在线段AE上,求AE及AM的长;
(3)点P为△ABO内的一个动点,设m=PA+PB+PO,请直接写出m的最小值,以及m取得最小值时,线段AP的长.manfen5.com 满分网
查看答案
如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网 查看答案
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

manfen5.com 满分网 查看答案
如图1,已知直线y=2x(即直线l1)和直线y=-manfen5.com 满分网x+4(即直线l2),l2与x轴相交于点A.点P从原点O出发,向x轴的正方向作匀速运动,速度为每秒1个单位,同时点Q从A点出发,向x轴的负方向作匀速运动,速度为每秒2个单位.设运动了t秒.
(1)求这时点P、Q的坐标(用t表示).
(2)过点P、Q分别作x轴的垂线,与l1、l2分别相交于点O1、O2(如图1).以O1为圆心、O1P为半径的圆与以O2为圆心、O2Q为半径的圆能否相切?若能,求出t值;若不能,说明理由.(同学可在图2中画草图)

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.