满分5 >
初中数学试题 >
在实数范围内,有意义,则x的取值范围是( ) A.x≥0 B.x≤0 C.x>0...
在实数范围内,
有意义,则x的取值范围是( )
A.x≥0
B.x≤0
C.x>0
D.x<0
考点分析:
相关试题推荐
如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
x+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O
1A
1B
1C
1,试探究O
1A
1B
1C
1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.
查看答案
如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
查看答案
某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在______个、______个、______个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明.
查看答案
如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.
查看答案
某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,请你根据以上信息,就该桶装水的销售单价或销售数量,提出一个用一元二次方程解决的问题,并写出解答过程.
查看答案