满分5 > 初中数学试题 >

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销....

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
manfen5.com 满分网
(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性; (2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值; (3)根据自变量的取值范围结合函数图象解答. 【解析】 (1)画图如图; 由图可猜想y与x是一次函数关系, 设这个一次函数为y=kx+b(k≠0) ∵这个一次函数的图象经过(30,500) (40,400)这两点, ∴解得 ∴函数关系式是:y=-10x+800 (2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得 W=(x-20)(-10x+800) =-10x2+1000x-16000 =-10(x-50)2+9000 ∴当x=50时,W有最大值9000. 所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元. (3)对于函数W=-10(x-50)2+9000,当x≤45时, W的值随着x值的增大而增大, ∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
复制答案
考点分析:
相关试题推荐
如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);
(2)在图(a)中,你发现线段AC,BD的数量关系是______,直线AC,BD相交成______度角;
(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.manfen5.com 满分网
查看答案
如图,已知二次函数y=ax2+4x+c的图象经过点A(1,-1)和点B(-3,-9).
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,-m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网 查看答案
如图.反比例函数y=-manfen5.com 满分网与一次函数y=-x+2的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24
(1)求CD的长;
(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.