如图,抛物线y=
x
2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:
≈1.41,
≈1.73,
≈2.24)
考点分析:
相关试题推荐
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
查看答案
如图,在直角坐标平面xOy中,抛物线C
1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C
1与x轴的另一个交点M的坐标;
(2)将抛物线C
1向右平移2个单位得抛物线C
2,求抛物线C
2的解析式;
(3)写出阴影部分的面积S.
查看答案
已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为
的中点.
(1)求证:AC是半圆O的切线;
(2)若AD=6,AE=6
,求BC的长.
查看答案
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=
x
2+3x+1的一部分,如图所示.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
查看答案
如图,小明为了测量一铁塔的高度CD,他先在A处测得塔顶C的仰角为30°,再向塔的方向直行40米到达B处,又测得塔顶C的仰角为60°,请你帮助小明计算出这座铁塔的高度.(小明的身高忽略不计,结果精确到0.1米,参考数据:
,
,
)
查看答案