满分5 > 初中数学试题 >

为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设...

为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.
(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)(精确到0.1m)manfen5.com 满分网
根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值. 【解析】 在Rt△ABD中,∠BAD=18°,AB=9m, ∴BD=AB×tan18°≈2.92m, ∴CD=BD-BC=2.92-0.5=2.42m, 在Rt△CDE中,∠CDE=72°,CD≈2.42m, ∴CE=CD×sin72°≈2.3m. 答:CE的高为2.3m.
复制答案
考点分析:
相关试题推荐
已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.

manfen5.com 满分网 查看答案
已知如图,矩形OABC的长OA=manfen5.com 满分网,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______

manfen5.com 满分网 查看答案
已知:三角形ABC内接于⊙O,过点A作直线EF.
(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠______,并证明之;
(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.
manfen5.com 满分网
查看答案
在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.
(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.
查看答案
先阅读,再解题
用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移项,得ax2+bx=-c,
方程两边除以a,得manfen5.com 满分网
方程两边加上manfen5.com 满分网,得manfen5.com 满分网,即manfen5.com 满分网
因为a≠0,所以4a2>0,从而当b2-4ac>0时,方程右边是一个正数,正数的平方根有两个,因此方程有两个不相等的实数根;当b2-4ac=0时,方程右边是零,因此方程有两个相等的实数根;当b2-4ac>0时,方程右边是一个负数,而负数没有平方根,因此方程没有实数根.
所以我们可以根据b2-4ac的值来判断方程的根的情况,请利用上述论断,不解方程,判别下列方程的根的情况.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.