满分5 > 初中数学试题 >

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从...

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点. (2)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值. (3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值. 【解析】 (1)点M.(1分) (2)经过t秒时,NB=t,OM=2t, 则CN=3-t,AM=4-2t, ∵A(4,0),C(0,4), ∴AO=CO=4, ∵∠AOC=90°, ∴∠BCA=∠MAQ=45°, ∴QN=CN=3-t ∴PQ=1+t,(2分) ∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.(3分) ∴S=-t2+t+2=-t2+t-++2=-(t-)2+,(5分) ∵0≤t<2 ∴当时,S的值最大.(6分) (3)存在.(7分) 设经过t秒时,NB=t,OM=2t 则CN=3-t,AM=4-2t ∴∠BCA=∠MAQ=45°(8分) ①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高 ∴PQ是底边MA的中线 ∴PQ=AP=MA ∴1+t=(4-2t) ∴t= ∴点M的坐标为(1,0)(10分) ②若∠QMA=90°,此时QM与QP重合 ∴QM=QP=MA ∴1+t=4-2t ∴t=1 ∴点M的坐标为(2,0).(12分)
复制答案
考点分析:
相关试题推荐
如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB的延长线交半圆于K,
求证:(1)△AEB∽△KEA;(2)AE2=EB•EK.

manfen5.com 满分网 查看答案
如图,正方形ABCD的边长为4,P是边BC上一点,QP⊥AP交DC于Q,问当点P在何位置时,△ADQ的面积最小并求出这个最小面积.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.
manfen5.com 满分网
查看答案
某产品每件的成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系式y=-x+200,为获得最大利润,每件产品的销售价应定为多少元?此时每日的销售利润是多少?
查看答案
如图,在矩形ABCD中,AB=2,AD=3,点P是BC上与B、C不重合的任意一点,设PA=x,点D到AP的距离为y,求y与x的函数表达式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.