满分5 > 初中数学试题 >

已知抛物线y=3ax2+2bx+c, (Ⅰ)若a=b=1,c=-1,求该抛物线与...

已知抛物线y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可; (Ⅱ)把a,b代入解析式可得△=4-12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围; (Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论. 【解析】 (Ⅰ)当a=b=1,c=-1时,抛物线为y=3x2+2x-1, 方程3x2+2x-1=0的两个根为x1=-1,. ∴该抛物线与x轴公共点的坐标是(-1,0)和(,0); (Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点. 对于方程3x2+2x+c=0,判别式△=4-12c≥0,有c≤.(3分) ①当时,由方程3x2+2x+=0,解得x1=x2=-. 此时抛物线为y=3x2+2x+与x轴只有一个公共点(-,0);(4分) ②当时,x1=-1时,y1=3-2+c=1+c; x2=1时,y2=3+2+c=5+c. 由已知-1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为, 应有即, 解得-5<c≤-1. 综上,或-5<c≤-1.(6分) (Ⅲ)对于二次函数y=3ax2+2bx+c, 由已知x1=0时,y1=c>0; x2=1时,y2=3a+2b+c>0, 又∵a+b+c=0, ∴3a+2b+c=(a+b+c)+2a+b=2a+b. ∴2a+b>0. ∵b=-a-c, ∴2a-a-c>0,即a-c>0. ∴a>c>0.(7分) ∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2-12ac=4(a+c)2-12ac=4[(a-c)2+ac]>0, ∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分) 又该抛物线的对称轴, 由a+b+c=0,c>0,2a+b>0, 得-2a<b<-a, ∴. 又由已知x1=0时,y1>0; x2=1时,y2>0,观察图象, 可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)
复制答案
考点分析:
相关试题推荐
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
查看答案
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向,顶点坐标,对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.

manfen5.com 满分网 查看答案
如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP:PQ:QR.

manfen5.com 满分网 查看答案
如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米)
(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)

manfen5.com 满分网 查看答案
如图,△ABC中,DG∥EC,EG∥BC.求证:AE2=AB•AD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.