满分5 >
初中数学试题 >
如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的...
如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是 cm2.
考点分析:
相关试题推荐
如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于
度.
查看答案
已知反比例函数
的图象经过点(3,-4),则这个函数的解析式为
.
查看答案
已知抛物线y=3ax
2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x
1=0时,对应的y
1>0;x
2=1时,对应的y
2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
查看答案
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD
2+CE
2=DE
2;
(4)在旋转过程中,(3)中的等量关系BD
2+CE
2=DE
2是否始终成立?若成立,请证明;若不成立,请说明理由.
查看答案
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-
x
2+
x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向,顶点坐标,对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
查看答案