△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s
1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s
2(如图2),则s
2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s
3,继续操作下去…,则第10次剪取时,s
10=______;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
考点分析:
相关试题推荐
某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨0.5元,该商品每月的销售量就减少5件.
(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;
(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
(3)若该网店每月要扣除200元的固定成本,问它每月能获得6000元的利润吗?请说明理由.
查看答案
己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=
,求tan∠ABF的值.
查看答案
如图,一次函数y=ax+b的图象与反比例函数y=
的图象交于A、B两点,与x轴交于点C,已知OA=
,
,点B的坐标为
.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
查看答案
如图,在矩形ABCD中,点E、F分别在边AD、DC上,已知△ABE∽△DEF.
(1)求证:∠BEF=90°;
(2)AB=5,AD=10,DF=2,求AE的长.
查看答案
如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.
查看答案