满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A...

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意与图象可得点C的坐标,根据圆的性质可得点B的坐标,根据对称轴方程与点B的坐标即可求得函数的解析式; (2)由抛物线的解析式可求得点A,E,B,C,D的坐标,判断Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=; (3)显然Rt△COA∽Rt△BCE,此时点P1(0,0), 过A作AP2⊥AC交y正半轴于P2,由Rt△CAP2∽Rt△BCE,得P2(0,), 过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0), 故在坐标轴上存在三个点P1(0,0),P2(0,),P3(9,0),使得以P、A、C为顶点的三角形与△BCE相似. 【解析】 (1)由题意可知C(0,-3),-=1, ∴抛物线的解析式为y=ax2-2ax-3(a>0), 过M作MN⊥y轴于N,连接CM,则MN=1,CM=, ∴CN=2,于是m=-1. 同理可求得B(3,0), ∴a×32-2a×3-3=0,得a=1. ∴抛物线的解析式为y=x2-2x-3. (2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3). ∵M到AB,CD的距离相等,OB=OC, ∴OA=OD, ∴点D的坐标为(0,1), ∴在Rt△BCO中,BC==3, ∴, 在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2 ∴△BCE是Rt△ , ∴, 即, ∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β, 因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=. (3)显然Rt△COA∽Rt△BCE,此时点P1(0,0). 过A作AP2⊥AC交y正半轴于P2, 由Rt△CAP2∽Rt△BCE,得P2(0,). 过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0). 故在坐标轴上存在三个点P1(0,0),P2(0,),P3(9,0), 使得以P、A、C为顶点的三角形与△BCE相似.
复制答案
考点分析:
相关试题推荐
△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______
(3)求第10次剪取后,余下的所有小三角形的面积之和.

manfen5.com 满分网 查看答案
某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨0.5元,该商品每月的销售量就减少5件.
(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;
(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
(3)若该网店每月要扣除200元的固定成本,问它每月能获得6000元的利润吗?请说明理由.
查看答案
己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=manfen5.com 满分网,求tan∠ABF的值.

manfen5.com 满分网 查看答案
如图,一次函数y=ax+b的图象与反比例函数y=manfen5.com 满分网的图象交于A、B两点,与x轴交于点C,已知OA=manfen5.com 满分网manfen5.com 满分网,点B的坐标为manfen5.com 满分网
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,点E、F分别在边AD、DC上,已知△ABE∽△DEF.
(1)求证:∠BEF=90°;
(2)AB=5,AD=10,DF=2,求AE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.