满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3...

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标. (2)根据B、C、D的坐标,可求得△BCD三边的长,然后判断这三条边的长是否符合勾股定理即可. (3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得△BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与△COA相似,那么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标. 【解析】 (1)设该抛物线的解析式为y=ax2+bx+c, 由抛物线与y轴交于点C(0,-3),可知c=-3, 即抛物线的解析式为y=ax2+bx-3, 把A(-1,0)、B(3,0)代入, 得 解得a=1,b=-2. ∴抛物线的解析式为y=x2-2x-3, ∴顶点D的坐标为(1,-4). (2)以B、C、D为顶点的三角形是直角三角形, 理由如下: 过点D分别作x轴、y轴的垂线,垂足分别为E、F. 在Rt△BOC中,OB=3,OC=3, ∴BC2=18, 在Rt△CDF中,DF=1,CF=OF-OC=4-3=1, ∴CD2=2, 在Rt△BDE中,DE=4,BE=OB-OE=3-1=2, ∴BD2=20, ∴BC2+CD2=BD2,故△BCD为直角三角形. (3)连接AC,则容易得出△COA∽△PCA,又△PCA∽△BCD,可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0). 过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD, 求得符合条件的点为. 过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD, 求得符合条件的点为P2(9,0). ∴符合条件的点有三个:O(0,0),,P2(9,0).
复制答案
考点分析:
相关试题推荐
如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.图中的△ABC是一个格点三角形.
(1)请你在第一象限内画出格点△AB1C1,使得△AB1C1∽△ABC,且△AB1C1与△ABC的相似比为3:1;
(2)写出B1、C1两点的坐标.

manfen5.com 满分网 查看答案
依据闯关游戏规则,请你探究“闯关游戏”的奥秘:
(1)用列表的方法表示有可能的闯关情况;
(2)求出闯关成功的概率.
manfen5.com 满分网

manfen5.com 满分网 查看答案
已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点的坐标为(-1,0),与y轴的交点坐标为(0,-3).
(1)求此二次函数的解析式;
(2)求此二次函数的图象与x轴的另一个交点的坐标;
(3)根据图象回答:当x取何值时,y<0?

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)

manfen5.com 满分网 查看答案
已知二次函数y=x2-4x+5.
(1)将y=x2-4x+5化成y=a (x-h)2+k的形式;
(2)指出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y随x的增大而增大?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.