满分5 > 初中数学试题 >

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD...

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
manfen5.com 满分网
(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长; (2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可; ②分三种情况讨论可知a与b满足的数量关系式. 【解析】 (1)①∵四边形ABCD是矩形, ∴AD∥BC, ∴∠CAD=∠ACB,∠AEF=∠CFE, ∵EF垂直平分AC,垂足为O, ∴OA=OC, ∴△AOE≌△COF, ∴OE=OF, ∴四边形AFCE为平行四边形, 又∵EF⊥AC, ∴四边形AFCE为菱形, ②设菱形的边长AF=CF=xcm,则BF=(8-x)cm, 在Rt△ABF中,AB=4cm, 由勾股定理得42+(8-x)2=x2, 解得x=5, ∴AF=5cm. (2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形; 同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形. 因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形, ∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA, ∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒, ∴PC=5t,QA=12-4t, ∴5t=12-4t, 解得, ∴以A、C、P、Q四点为顶点的四边形是平行四边形时,秒. ②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上. 分三种情况: i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12; ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12; iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12. 综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
复制答案
考点分析:
相关试题推荐
某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
查看答案
如图,用火柴棍摆出一列正方形图案,若按这种方式摆下去,摆出第n个图案用    根火柴棍(用含n的代数式表示).
manfen5.com 满分网 查看答案
如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿梯形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图象如图2所示,那么△ABC的面积为   
manfen5.com 满分网 查看答案
设x1、x2是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2-3)+a=2,则a=    查看答案
如图,已知梯形ABCD中,∠B=90°,AD∥BC,沿着CE翻折,点D与点B重合,AD=2,AB=4,则tan∠ECB=    ,CD=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.