满分5 >
初中数学试题 >
如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( ) A...
如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )
A.40°
B.30°
C.50°
D.60°
考点分析:
相关试题推荐
不解方程,判别方程2x
2-3x-4=0的根的情况是( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
查看答案
如图,已知抛物线y=-x
2+bx+c与x轴交于点A(-1,0)和B,与y轴交于点C(0,3).
(1)求此抛物线的解析式及点B的坐标;
(2)设抛物线的顶点为D,连接CD、DB、CB、AC.
①求证:△AOC∽△DCB;
②在坐标轴上是否存在与原点O不重合的点P,使以P、A、C为顶点的三角形与△DCB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由;
(3)设Q是抛物线上一点,连接QB、QC,把△QBC沿直线BC翻折得到△Q′BC,若四边形QBQ′C为菱形,求此时点Q的坐标.
查看答案
如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
查看答案
如图,要设计一个矩形的花坛,花坛长60m,宽40m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)
(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的
多36m
2时,求x的值;
(3)根据设计的要求,x的值不能超过3m.如果修建甬道的总费用(万元)与x(m)成正比例关系,比例系数是7.59,花坛其余部分的绿化费用为0.03万元/m
2,那么x为何值时,所建花坛的总费用最少?最少费用是多少万元?
查看答案
我市两条马路AB和CD相交于点P,其交角为30°,在马路CD上距交点P处1200米的点M处有一家医院(如图),据计算,汽车鸣笛在相距
米内可对病人产生影响;一辆汽车在马路AB上行驶,试判断汽车鸣笛是否会对医院病人有影响?如果有影响就需要在马路AB上打出警示牌“该路段禁止鸣笛”,请求出2块警示牌之间的距离,并试用尺规作图法确定警示牌的位置(不写作法,保留作图痕迹).
查看答案