满分5 > 初中数学试题 >

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于...

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.

manfen5.com 满分网
(1)要证PB是⊙O的切线,只要连接OB,求证∠OBP=90°即可; (2)连接OP,交AB于点D,求半径时,可以证明△APO∽△DPA,还可证明△PAO∽△ABC,在Rt△OAP中利用勾股定理. (1)证明:连接OB, ∵OA=OB, ∴∠OAB=∠OBA, ∵PA=PB, ∴∠PAB=∠PBA, ∴∠OAB+∠PAB=∠OBA+∠PBA, ∴∠PAO=∠PBO.(2分) 又∵PA是⊙O的切线, ∴∠PAO=90°, ∴∠PBO=90°, ∴OB⊥PB.(4分) 又∵OB是⊙O半径, ∴PB是⊙O的切线,(5分) 说明:还可连接OB、OP,利用△OAP≌△OBP来证明OB⊥PB. (2)【解析】 连接OP,交AB于点D, ∵PA=PB, ∴点P在线段AB的垂直平分线上. ∵OA=OB, ∴点O在线段AB的垂直平分线上, ∴OP垂直平分线段AB,(7分) ∴∠PDA=90°. 又∵PA切⊙O于点A, ∴∠PAO=90°, ∴∠PAO=∠PDA, 又∵∠APO=∠DPA, ∴△APO∽△DPA, ∴, ∴AP2=PO•DP. 又∵OD=BC=, ∴PO(PO-OD)=AP2,即PO(PO-)=AP2,即:PO2-PO=, 解得PO=2,(9分) 在Rt△APO中,,即⊙O的半径为1.(10分) 说明:求半径时,还可证明△PAO∽△ABC或在Rt△OAP中利用勾股定理.
复制答案
考点分析:
相关试题推荐
学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方manfen5.com 满分网米150元,设绿化区的长边长为x米.
(1)用x表示绿化区短边的长为______米,x的取值范围为______
(2)学校计划投资25000元用于此项工程建设,问能否按要求完成此项工程任务?若能,求绿化区的长边长.
查看答案
已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
用适当的方法解下列方程:
(1)x2-2x-4=0;(2)2(x-3)2+x(x-3)=0.
查看答案
计算:
(1)manfen5.com 满分网  (2)manfen5.com 满分网-3tan30°+(π-4)-manfen5.com 满分网
查看答案
已知⊙P的半径为2,圆心P在抛物线manfen5.com 满分网上运动,当⊙P与x轴相切时,圆心P的横坐标为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.