满分5 > 初中数学试题 >

如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥A...

如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB•AF=CB•CD;
(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为ycm2
①求y关于x的函数关系式.
②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.

manfen5.com 满分网
(1)先根据AD=CD,DE⊥AC判断出DE垂直平分AC,再由线段垂直平分线的性质及直角三角形的性质可得出∠DCF=∠DAF=∠B,在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B可知△DCF∽△ABC,由相似三角形的对应边成比例即可得出答案; (2)①先根据勾股定理求出AC的长,再由梯形的面积公式即可得出x、y之间的函数关系式; ②由EF∥BC,得△AEF∽△ABC,由相似三角形的对应边成比例可求出AB、EF的长,进而可得出△AEF∽△DEA及DF的长,根据DE=DF+FE可求出DE的长,由①中的函数关系式即可得出结论. 证明:(1)∵AD=CD,DE⊥AC, ∴DE垂直平分AC,(1分) ∴AF=CF,∠DFA=∠DFC=90°,∠DAF=∠DCF. ∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°, ∴∠DCF=∠DAF=∠B.(2分) 在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B, ∴△DCF∽△ABC.(3分) ∴=,即=, ∴AB•AF=CB•CD;(4分) (2)【解析】 连接PB, ①∵AB=15,BC=9,∠ACB=90°, ∴AC===12,(6分) ∴CF=AF=6. ∴y=(x+9)×6=3x+27;(7分) ②由EF∥BC,得△AEF∽△ABC. AE=BE=AB=,EF=.(8分) 由∠EAD=∠AFE=90°,∠AEF=∠DEA,得△AEF∽△DEA. Rt△ADF中,AD=10,AF=6, ∴DF=8. ∴DE=DF+FE=8+=.(9分) ∵y=3x+27(0≤x≤),函数值y随着x的增大而增大, ∴当x=时,y有最大值,此时y=.(10分)
复制答案
考点分析:
相关试题推荐
已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x-h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在-3<x≤manfen5.com 满分网时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函数的函数值y=y3时,对应的x的值为-1<x<0?若存在,求出n的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?

manfen5.com 满分网 查看答案
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的长.

manfen5.com 满分网 查看答案
如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,乙楼AB高为120manfen5.com 满分网米.求甲、乙两栋高楼的水平距离BD为多少米?

manfen5.com 满分网 查看答案
如图,已知反比例函数y=manfen5.com 满分网与一次函数y=-x+2的图象交于A、B两点,且点A的横坐标是-2.
(1)求出反比例函数的解析式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.