满分5 > 初中数学试题 >

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD...

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
manfen5.com 满分网
(1)根据O、E的坐标即可确定抛物线的解析式,进而求出其顶点坐标,即可得出所求的结论; (2)①当t=时,OA=AP=,由此可求出P点的坐标,将其代入抛物线的解析式中进行验证即可; ②此题要分成两种情况讨论: 一、PN=0时,即t=0或t=3时,以P、N、C、D为顶点的多边形是△PCD,以CD为底AD长为高即可求出其面积; 二、PN≠0时,即0<t<3时,以P、N、C、D为顶点的多边形是梯形PNCD,根据抛物线的解析式可表示出N点的纵坐标,从而得出PN的长,根据梯形的面积公式即可求出此时S、t的函数关系式,令S=5,可得到关于t的方程,若方程有解,根据求得的t值即可确定N点的坐标,若方程无解,则说明以P、N、C、D为顶点的多边形的面积不可能为5. 【解析】 (1)因抛物线y=-x2+bx+c经过坐标原点O(0,0)和点E(4,0), 故可得c=0,b=4, 所以抛物线的解析式为y=-x2+4x(1分), 由y=-x2+4x,y=-(x-2)2+4, 得当x=2时,该抛物线的最大值是4;(2分) (2)①点P不在直线ME上; 已知M点的坐标为(2,4),E点的坐标为(4,0), 设直线ME的关系式为y=kx+a; 于是得,, 解得:, 所以直线ME的关系式为y=-2x+8;(3分) 由已知条件易得,当t=时,OA=AP=,P(,)(4分) ∵P点的坐标不满足直线ME的关系式y=-2x+8; ∴当t=时,点P不在直线ME上;(5分) ②以P、N、C、D为顶点的多边形面积可能为5 ∵点A在x轴的非负半轴上,且N在抛物线上, ∴OA=AP=t; ∴点P、N的坐标分别为(t,t)、(t,-t2+4t)(6分) ∴AN=-t2+4t(0≤t≤3), ∴AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0, ∴PN=-t2+3t(7分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, ∴S=DC•AD=×3×2=3; (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ∵PN∥CD,AD⊥CD, ∴S=(CD+PN)•AD=[3+(-t2+3t)]×2=-t2+3t+3(8分) 当-t2+3t+3=5时,解得t=1、2(9分) 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5, 当t=1时,此时N点的坐标(1,3)(10分) 当t=2时,此时N点的坐标(2,4).(11分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合,(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)
复制答案
考点分析:
相关试题推荐
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
查看答案
如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.
(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK______MK(填“>”,“<”或“=”);
②如图4,当∠CDF=30°时,AM+CK______MK(只填“>”或“<”);
(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK______MK,证明你所得到的结论;
(3)如果MK2+CK2=AM2,请直接写出∠CDF的度数和manfen5.com 满分网的值.
manfen5.com 满分网
查看答案
如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
manfen5.com 满分网
查看答案
如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A关于manfen5.com 满分网直线PO对称,已知OA=4,PA=manfen5.com 满分网.求:
(1)∠POA的度数;
(2)弦AB的长;
(3)阴影部分的面积.
查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.