满分5 > 初中数学试题 >

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”...

manfen5.com 满分网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数. (2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式. (3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k. 【解析】 (1)根据题意可得:A(-1,0),B(3,0); 则设抛物线的解析式为y=a(x+1)(x-3)(a≠0), 又∵点D(0,-3)在抛物线上, ∴a(0+1)(0-3)=-3,解之得:a=1 ∴y=x2-2x-3(3分) 自变量范围:-1≤x≤3(4分) (2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM, 在Rt△MOC中, ∵OM=1,CM=2, ∴∠CMO=60°,OC= 在Rt△MCE中, ∵MC=2,∠CMO=60°, ∴ME=4 ∴点C、E的坐标分别为(0,),(-3,0)(6分) ∴切线CE的解析式为(8分) (3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0)(9分) 由题意可知方程组只有一组解 即kx-3=x2-2x-3有两个相等实根, ∴k=-2(11分) ∴过点D“蛋圆”切线的解析式y=-2x-3.(12分)
复制答案
考点分析:
相关试题推荐
如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?

manfen5.com 满分网 查看答案
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.
(1)求弦BC的长;(2)求圆O的半径长.
(本题参考数据:sin67.4°=manfen5.com 满分网,cos67.4°=manfen5.com 满分网,tan67.4°=manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,C是manfen5.com 满分网的中点,CF⊥AB,F为垂足.
(1)求证:△AEC是等腰三角形.
(2)设AB=4,∠DAB=30°,求CE的长.

manfen5.com 满分网 查看答案
用长度为13m的栅栏围一个长方形养鸡场(其中一边靠墙,若墙的长度足够)
(1)问如何分配三边可以使围成的面积为20m2
(2)能否围成养鸡场面积为22m2?为什么?
(3)如何分配三边,才能使围成养鸡场的画积最大?最大面积为多少?
查看答案
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.