满分5 > 初中数学试题 >

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x...

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=manfen5.com 满分网经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
manfen5.com 满分网
(1)如图甲,连接PE、PB,设PC=n,由正方形CDEF的面积为1,可得CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,由PB=PE,根据勾股定理即可求得n的值,继而求得B的坐标; (2)由(1)知A(0,2),C(2,0),即可求得抛物线的解析式,然后求得FM的长,则可得△PEF∽△EMF,则可证得∠PEM=90°,即ME是⊙P的切线; (3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,△ACQ周长的最小值为AC+A′C的长,利用勾股定理即可求得△ACQ周长的最小值; ②分别当Q点在F点上方时,当Q点在线段FN上时,当Q点在N点下方时去分析即可求得答案. (1)【解析】 如图甲,连接PE、PB,设PC=n, ∵正方形CDEF的面积为1, ∴CD=CF=1, 根据圆和正方形的轴对称性知:OP=PC=n, ∴BC=2PC=2n, ∵而PB=PE, ∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+1, ∴5n2=(n+1)2+1, 解得:n=1或n=-(舍去), ∴BC=OC=2, ∴B点坐标为(2,2); (2)证明:如图甲,由(1)知A(0,2),C(2,0), ∵A,C在抛物线上, ∴, 解得:, ∴抛物线的解析式为:y=x2-x+2=(x-3)2-, ∴抛物线的对称轴为x=3,即EF所在直线, ∵C与G关于直线x=3对称, ∴CF=FG=1, ∴MF=FG=, 在Rt△PEF与Rt△EMF中, ∠EFM=∠EFP, ∵,, ∴, ∴△PEF∽△EMF, ∴∠EPF=∠FEM, ∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°, ∴ME是⊙P的切线; (3)【解析】 ①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ, 则有AQ=A′Q, ∴△ACQ周长的最小值为AC+A′C的长, ∵A与A′关于直线x=3对称, ∴A(0,2),A′(6,2), ∴A′C==2,而AC==2, ∴△ACQ周长的最小值为2+2; ②当Q点在F点上方时,S=S梯形ACFK-S△AKQ-S△CFQ=×(3+1)×2-×(2-t)×3-×t×1=t+1, 同理,可得:当Q点在线段FN上时,S=1-t, 当Q点在N点下方时,S=t-1.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
查看答案
如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?

manfen5.com 满分网 查看答案
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.
(1)求弦BC的长;(2)求圆O的半径长.
(本题参考数据:sin67.4°=manfen5.com 满分网,cos67.4°=manfen5.com 满分网,tan67.4°=manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,C是manfen5.com 满分网的中点,CF⊥AB,F为垂足.
(1)求证:△AEC是等腰三角形.
(2)设AB=4,∠DAB=30°,求CE的长.

manfen5.com 满分网 查看答案
用长度为13m的栅栏围一个长方形养鸡场(其中一边靠墙,若墙的长度足够)
(1)问如何分配三边可以使围成的面积为20m2
(2)能否围成养鸡场面积为22m2?为什么?
(3)如何分配三边,才能使围成养鸡场的画积最大?最大面积为多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.