(1)由二次函数的解析式可求出和y轴交点的坐标即点C的坐标,由已知条件求出OA的长度进而求出点A的坐标,把A,C的坐标分别代入即可求出二次函数和一次函数的解析式;
(2)令y=0,求出B点的坐标即OB的长度,所以AB的长度可以求出,又因为AB上的高为OC,利用面积公式即可求出△ABC的面积.
【解析】
(1)在中,
令x=0,得y=-2,
∴C(0,-2),
∴OC=2,
在Rt△AOC中,OA==4,
∴A(4,0).
∵过A(4,0),
∴,
∴b=,
∴.
∵y=mx+n(m≠0)过A(4,0)、C(0,-2),
∴,
∴.
∴y=x-2;
(2)在中,
令y=0,得x1=1,x2=4,
∴B(1,0),
∴OB=1,
∴AB=OA-OB=3,
∴S△ABC=×AB•OC=×3×2=3.