满分5 > 初中数学试题 >

如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、...

如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.

manfen5.com 满分网
(1)连接OE,得到∠ADO=∠AEO=90°,根据∠A=90°,推出矩形ADOE,进一步推出正方形ADOE,得出OD∥AC,OD=AD=3,∠BOD=∠C,即可求出答案; (2)设⊙O与BC交于M、N两点,由(1)得:四边形ADOE是正方形,推出∠COE+∠BOD=90°,根据,OE=3,求出,根据S扇形DOM+S扇形EON=S扇形DOE,即可求出阴影部分的面积. 【解析】 (1)连接OE, ∵AB、AC分别切⊙O于D、E两点, ∴AD⊥OD,AE⊥OE, ∴∠ADO=∠AEO=90°, 又∵∠A=90°, ∴四边形ADOE是矩形, ∵OD=OE, ∴四边形ADOE是正方形, ∴OD∥AC,OD=AD=3, ∴∠BOD=∠C, ∴在Rt△BOD中,, ∴. 答:tanC=. (2)如图,设⊙O与BC交于M、N两点, 由(1)得:四边形ADOE是正方形, ∴∠DOE=90°, ∴∠COE+∠BOD=90°, ∵在Rt△EOC中,=,OE=3, ∴, ∴S扇形DOM+S扇形EON=S扇形DOE=, ∴S阴影=S△BOD+S△COE-(S扇形DOM+S扇形EON)=, 答:图中两部分阴影面积的和为.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数manfen5.com 满分网的图象交于二、四象限内的A、B两点,点B的坐标为(6,n).线段OA=5,E为x轴负半轴上一点,且sin∠AOE=manfen5.com 满分网,求该反比例函数和一次函数的解析式.

manfen5.com 满分网 查看答案
今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.
(1)求B点的海拔;
(2)求斜坡AB的坡度.

manfen5.com 满分网 查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).画出△OAB绕点O逆时针旋转90°后的△OA1B1,并求点A旋转到点A1所经过的路线长(结果保留π)

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,点E是⊙O外一点,EO⊥BC于点D.
求证:∠1=∠E.
证明:

manfen5.com 满分网 查看答案
已知:如图,四边形ABCD是平行四边形,F是AB上一点,连接DF并延长交CB的延长线于E.
求证:AD:AF=CE:AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.