已知抛物线y=-

x
2+bx+c的对称轴为直线x=1,最大值为3,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.
(1)求抛物线的解析式.
(2)如图1.求点A的坐标及线段OC的长;
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一 个顶点E在PQ上.求直线BQ的函数解析式;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上(D不与Q重合).另一个顶点E在PQ上,求点P的坐标.
查看答案
●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______;
②若C(-2,2),D(-2,-1),则F点坐标为______;
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数

的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
查看答案