满分5 > 初中数学试题 >

已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE...

已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=manfen5.com 满分网,求DE的长.

manfen5.com 满分网
(1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论; (2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论; (3)结论CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE. (1)证明:连接CD, ∵BC为⊙O的直径,∴CD⊥AB, 又∵AC=BC, ∴AD=BD,即点D是AB的中点. (2)【解析】 DE是⊙O的切线. 证明:连接OD,则DO是△ABC的中位线, ∴DO∥AC, 又∵DE⊥AC, ∴DE⊥DO即DE是⊙O的切线; (3)【解析】 ∵AC=BC,∴∠B=∠A, ∴cosB=cosA=, ∵cosB=,BC=18, ∴BD=6, ∴AD=6, ∵cosA=, ∴AE=2, 在Rt△AED中,DE=.
复制答案
考点分析:
相关试题推荐
已知关于x的方程x2-(2k-1)x+k2-2=0.
(1)k取何值时,方程有两个不相等的实数根;
(2)在(1)的条件下,请你取一个自已喜爱的k值,并求出此时方程的解.
查看答案
已知a、b满足manfen5.com 满分网
(1)求a、b的值;
(2)求二次函数y=x2-ax+b图象与x轴交点坐标;
(3)写出(2)中,当y>0时,x的取值范围.
查看答案
如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD.
(1)求证:AC=BD
(2)若OF⊥CD于F,OG⊥AB于G,问:四边形OFEG是何特殊四边形?并说明理由.

manfen5.com 满分网 查看答案
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.

manfen5.com 满分网 查看答案
甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:
命中环数78910
甲命中相应环数的次数221
乙命中相应环数的次数131
若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.