满分5 > 初中数学试题 >

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC...

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网
(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线; (2)过O作OF⊥AB,则OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长. (1)证明:连接OC ∵OA=OC ∴∠OCA=∠OAC ∵AC平分∠PAE ∴∠DAC=∠CAO ∴∠DAC=∠OCA ∴PB∥OC ∵CD⊥PA ∴CD⊥OC,CO为⊙O半径, ∴CD为⊙O的切线; (2)【解析】 过O作OF⊥AB,垂足为F, ∴∠OCD=∠CDA=∠OFD=90°, ∴四边形DCOF为矩形, ∴OC=FD,OF=CD. ∵DC+DA=6, 设AD=x,则OF=CD=6-x, ∵⊙O的直径为10, ∴DF=OC=5, ∴AF=5-x, 在Rt△AOF中,由勾股定理得AF2+OF2=OA2. 即(5-x)2+(6-x)2=25, 化简得x2-11x+18=0, 解得x1=2,x2=9. ∵CD=6-x大于0,故x=9舍去, ∴x=2, 从而AD=2,AF=5-2=3, ∵OF⊥AB,由垂径定理知,F为AB的中点, ∴AB=2AF=6.
复制答案
考点分析:
相关试题推荐
如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同
(1)一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少 (用树状图或列表法求解)?

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).
(1)画出△ABC,并求出AC所在直线的解析式.
(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.

manfen5.com 满分网 查看答案
用适当的方法解方程:
(1)2x(x-1)+3(x-1)=0
(2)9(2x-5)2-4=0.
查看答案
计算
①(manfen5.com 满分网manfen5.com 满分网
②(manfen5.com 满分网-3manfen5.com 满分网2+(2+manfen5.com 满分网)(2-manfen5.com 满分网).
查看答案
如图,图①中圆与正方形各边都相切,设这个圆的周长为C1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长为C2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长为C3;…,依次规律,当正方形边长为2时,则C1+C2+C3+…C99+C100=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.