满分5 > 初中数学试题 >

如图,在直角坐标系中,已知点A(,0),B(-,0),以点A为圆心,AB为半径的...

如图,在直角坐标系中,已知点A(manfen5.com 满分网,0),B(-manfen5.com 满分网,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=manfen5.com 满分网x2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)根据A(,0),B(-,0)可求圆半径是2,连接AD,在Rt△AOD中,可求OD,即D(0,-3),把C,D两点坐标代入抛物线y=x2+bx+c,可求抛物线解析式,将B点坐标代入解析式进行检验即可; (2)由(1)知,点B关于抛物线对称轴的对称点为点C,连接CD,交抛物线对称轴于P点,P点即为所求,先求直线CD的解析式,已知P点横坐标x=,代入直线CD的解析式即可求P; (3)∵BC=4,Q点横坐标是,M在Q点左边,则M点横坐标为-4=-3,代入抛物线解析式可求M点坐标. 【解析】 (1)∵OA=,AB=AC=2, ∴B(-,0),C(3,0),连接AD, 在Rt△AOD中,AD=2,OA=, ∴OD==3, ∴D的坐标为(0,-3),(3分) 又∵D,C两点在抛物线上, ∴, 解得, ∴抛物线的解析式为:y=x2-x-3,(5分) 当x=-时,y=0, ∴点B(-,0)在抛物线上,(6分) (2)∵y=x2-x-3, =(x-)2-4, ∴抛物线y=x2-x-3的对称轴方程为x=,(7分) 在抛物线的对称轴上存在点P,使△PBD的周长最小. ∵BD的长为定值∴要使△PBD周长最小只需PB+PD最小. 连接DC,则DC与对称轴的交点即为使△PBD周长最小的点. 设直线DC的解析式为y=mx+n. 由, 得, ∴直线DC的解析式为y=x-3. 由, 得, 故点P的坐标为.(9分) (3)存在,设Q(,t)为抛物线对称轴x=上一点, M在抛物线上要使四边形BCQM为平行四边形, 则BC∥QM且BC=QM,点M在对称轴的左侧. 于是,过点Q作直线L∥BC与抛物线交于点M(xm,t), 由BC=QM得QM=4, 从而xm=-3,t=12, 另外:M在抛物线的顶点上也可以构造平行四边形! 故在抛物线上存在点M(-3,12)或(5,12)或(,-4),使得四边形BCQM为平行四边形.(12分)
复制答案
考点分析:
相关试题推荐
某商场经营一批进价为2元的小商品,在市场营销中发现此商品的日销售价x(元)与日销售量y(件)之间有如下关系:
x35911
y181462
(1)根据上表在直角坐标系中描出相应的点,观察点的分布,求出y与x之间的关系式;
(2)写出日销售利润P(元)与日销售价x(元)之间的关系,并写出x的取值范围;
(3)日销售利润有无最大值,如果有,请指出当售价为多少元时,获得的利润最大?

manfen5.com 满分网 查看答案
已知点A(1,1)在二次函数y=x2-2ax+b图象上.
(1)用含a的代数式表示b;
(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.
查看答案
如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.
(1)求证:∠ADB=∠E;
(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.
(3)当AB=5,BC=6时,求⊙O的半径.
manfen5.com 满分网
查看答案
如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知圆心0到BD的距离为3,求AD的长.

manfen5.com 满分网 查看答案
如图,弦AB和CD相交于⊙O内一点P,求证:PA•PB=PC•PD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.