满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24c...

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径.动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动,P、Q两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t,求:
(1)t分别为何值时,四边形PQCD为平行四边形、等腰梯形?
(2)t分别为何值时,直线PQ与⊙O相切、相离、相交?

manfen5.com 满分网
(1)若PQCD为平行四边形,则需QC=PD,即3t=24-t,得t=6秒;同理只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形,如图,过P、D分别作BC的垂线,交BC于E、F点,则EF=PD,QE=FC=2,即3t-(24-t)=4,解得t=7秒,问题得解. (2)因为点P、Q分别在线段AD和BC上的运动,可以统一到直线PQ的运动中,要探求时间t对直线PQ与⊙O位置关系的影响,可先求出t为何值时,直线PQ与⊙O相切这一整个运动过程中的一瞬,再结合PQ的初始与终了位置一起加以考虑,设运动t秒时,直线PQ与⊙O相切于点G,如图因为,AB=8,AP=t,BQ=26-3t,所以,PQ=26-2t,因而,过p做PH⊥BC,得HQ=26-4t,于是由勾股定理,可的关于t的一元二次方程,则t可求.问题得解. 【解析】 (1)因为AD∥BC, 所以,只要QC=PD,则四边形PQCD为平行四边形, 此时有,3t=24-t, 解得t=6, 所以t=6秒时,四边形PQCD为平行四边形. 又由题意得,只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形, 过P、D分别作BC的垂线交BC于E、F两点, 则由等腰梯形的性质可知,EF=PD,QE=FC=2, 所以3t-(24-t)=4, 解得t=7秒所以当t=7秒时,四边形PQCD为等腰梯形. (2)设运动t秒时,直线PQ与⊙O相切于点G,过P作PH⊥BC于点H, 则PH=AB=8,BH=AP, 可得HQ=26-3t-t=26-4t, 由切线长定理得,AP=PG,QG=BQ, 则PQ=PG+QG=AP+BQ=t+26-3t=26-2t 由勾股定理得:PQ2=PH2+HQ2,即 (26-2t)2=82+(26-4t)2 化简整理得 3t2-26t+16=0, 解得t1=或 t2=8, 所以,当t1=或 t2=8时直线PQ与⊙O相切. 因为t=0秒时,直线PQ与⊙O相交, 当t=秒时,Q点运动到B点,P点尚未运动到D点,但也停止运动,直线PQ也与⊙O相交, 所以可得以下结论: 当t1=或 t2=8秒时,直线PQ与⊙O相切; 当0≤t<或8<t≤(单位秒)时,直线PQ与⊙O相交; 当<t<8时,直线PQ与⊙O相离.
复制答案
考点分析:
相关试题推荐
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象经过怎样的一次平移,可使平移后所得图象与坐标轴只有两个交点?
查看答案
manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
查看答案
某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.
(1)求售价为70元时的销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
查看答案
已知点A(1,a)在抛物线y=x2
(1)求A点的坐标;
(2)在x轴上是否存在点P,使△OAP是等腰三角形,若存在写出P点坐标;若不存在,说明理由.
查看答案
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.