满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的...

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)求AD的长.

manfen5.com 满分网
(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED全等,根据全等三角形的对应边相等即可得证; (2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB-AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB-CD表示出BD=12-x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长. 【解析】 (1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知), ∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径), ∴∠AED=90°(直径所对的圆周角为直角), 又AD是△ABC的∠BAC的平分线(已知), ∴∠CAD=∠EAD(角平分线定义), ∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等), 在Rt△ACD和Rt△AED中, , ∴Rt△ACD≌Rt△AED(HL), ∴AC=AE(全等三角形的对应边相等); (2)∵△ABC为直角三角形,且AC=5,CB=12, ∴根据勾股定理得:AB==13, 由(1)得到∠AED=90°,则有∠BED=90°, 设CD=DE=x,则DB=BC-CD=12-x,EB=AB-AE=AB-AC=13-5=8, 在Rt△BED中,根据勾股定理得:BD2=BE2+ED2, 即(12-x)2=x2+82, 解得:x=, ∴CD=,又AC=5,△ACD为直角三角形, ∴根据勾股定理得:AD==.
复制答案
考点分析:
相关试题推荐
如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线l的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:manfen5.com 满分网≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

manfen5.com 满分网 查看答案
如图,已知直线manfen5.com 满分网与双曲线manfen5.com 满分网(k>0)交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网(k>0)上一点C的纵坐标为8,求△AOC的面积.

manfen5.com 满分网 查看答案
计算
(1)manfen5.com 满分网(2)sin230°+cos245°+manfen5.com 满分网sin60°•tan45°.
查看答案
如图,⊙O的直径AB和弦CD相交于E,若AE=2,BE=6,∠CEA=30°,则CD的长为    ;C点到AB的距离与D点到AB距离的比为   
manfen5.com 满分网 查看答案
将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB=AC=8cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是    cm2(结果精确到0.1,manfen5.com 满分网≈1.73).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.