先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c为三边的三角形是直角三角形.
证明:a(1-x2)+2bx+c(1+x2)=0
去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,
∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.
∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,
∴b2+c2-a2=0,即b2+c2=a2.
∴以a、b、c为三边的三角形是直角三角形.