满分5 >
初中数学试题 >
函数中,自变量x的取值范围是( ) A.x≥0 B.x≥-1 C.x≠-1 D....
函数
中,自变量x的取值范围是( )
A.x≥0
B.x≥-1
C.x≠-1
D.x>-1
考点分析:
相关试题推荐
已知二次函数
的图象与x轴交于点A(
,0)、点B,与y轴交于点C.
(1)求点B坐标;
(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.
①当t为何值时,点A′恰好落在二次函数
图象的对称轴上;
②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S的最大值.
查看答案
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
查看答案
已知关于x的一元二次方程x
2-4x+1-2k=0有两个不等的实根,
(1)求k的取值范围;
(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;
(3)在(2)的条件下,二次函数y=x
2-4x+1-2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若
∠DAB=60°,求D点的坐标.
查看答案
如图1,若将△AOB绕点O逆时针旋转180°得到△COD,则△AOB≌△COD.此时,我们称△AOB与△COD为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB,点E为AC中点,F为BC上一点且BF≠FC(F不与B,C重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.
请分别按下列要求用直线将图2中的△ABC重新进行分割,画出分割线及拼接后的图形.
(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;
(2)在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;
(3)在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为钝角三角形.
查看答案
已知:如图,AB是⊙O的直径,BC是弦,OD⊥BC于点F,交⊙O于点D,连接AD、CD,∠E=∠ADC.
(1)求证:BE是⊙O的切线;
(2)若BC=6,tanA=
,求⊙O的半径.
查看答案