满分5 > 初中数学试题 >

如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一...

如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.

manfen5.com 满分网
(1)假设存在一点P,使点Q与点C重合,再设AP的长为x,利用勾股定理即可用x表示出DP、PC的长,在Rt△PCD中可求出x的值; (2)连接AC,设BP=y,则AP=m-y,由相似三角形的判定定理得出△PBQ∽△ABC,△APD∽△BQP,再根据相似三角形的对应边成比例即可求出BQ的表达式; (3)连接DQ,把四边形PQCD化为两个直角三角形,再用m表示出PD及CQ的长,利用三角形的面积公式即可解答. 【解析】 (1)存在点P. 假设存在一点P,使点Q与点C重合,如图1所示,设AP的长为x,则BP=10-x, 在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2, 在Rt△PBC中,PC2=BC2+PB2,即PC2=42+(10-x)2, 在Rt△PCD中,CD2=DP2+PC2,即102=42+x2+42+(10-x)2, 解得x=2或8, 故当m=10时,存在点P使得点Q与点C重合,此时AP=2或8; (2)连接AC,设BP=y,则AP=m-y, ∵PQ∥AC, ∴△PBQ∽△ABC, ∴=,即=①, ∵DP⊥PQ, ∴∠APD+∠BPQ=90°, ∵∠APD+∠ADP=90°,∠BPQ+∠PQB=90°, ∴∠APD=∠BQP, ∴△APD∽△BQP, ∴=,即=②, ①②联立得,BQ=; (3)连接DQ,  由已知PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形(如图), ∴∠BPQ=∠ADP,又∠B=∠A=90°, ∴△PBQ≌△DAP, ∴PB=DA=4,AP=BQ=m-4, ∴以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式为: S四边形PQCD=S矩形ABCD-S△DAP-S△QBP=4m-×4×(m-4)-×4×(m-4)=16, ∵AD=4,m>4,△PBC中PB是直角三角形的另一直角边, ∴4<m<8.
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

manfen5.com 满分网 查看答案
已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.
(1)如图1,当P点在线段AB上时,求PE+PF的值.
(2)如图2,当P点在线段AB的延长线上时,求PE-PF的值.

manfen5.com 满分网 查看答案
如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

manfen5.com 满分网 查看答案
如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

manfen5.com 满分网 查看答案
某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
manfen5.com 满分网
(1)根据图示填写下表;
班级平均数(分)中位数(分)众数(分)
九(1)85
九(2)85100
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.