满分5 > 初中数学试题 >

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC...

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网
(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线; (2)过O作OF⊥AB,则OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长. (1)证明:连接OC ∵OA=OC ∴∠OCA=∠OAC ∵AC平分∠PAE ∴∠DAC=∠CAO ∴∠DAC=∠OCA ∴PB∥OC ∵CD⊥PA ∴CD⊥OC,CO为⊙O半径, ∴CD为⊙O的切线; (2)【解析】 过O作OF⊥AB,垂足为F, ∴∠OCD=∠CDA=∠OFD=90°, ∴四边形DCOF为矩形, ∴OC=FD,OF=CD. ∵DC+DA=6, 设AD=x,则OF=CD=6-x, ∵⊙O的直径为10, ∴DF=OC=5, ∴AF=5-x, 在Rt△AOF中,由勾股定理得AF2+OF2=OA2. 即(5-x)2+(6-x)2=25, 化简得x2-11x+18=0, 解得x1=2,x2=9. ∵CD=6-x大于0,故x=9舍去, ∴x=2, 从而AD=2,AF=5-2=3, ∵OF⊥AB,由垂径定理知,F为AB的中点, ∴AB=2AF=6.
复制答案
考点分析:
相关试题推荐
如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-l),B(-5,-4),C(-5,-l)
(1)作出△ABC关于点O(0,0)中心对称的图形△A1B1C1,并直接写出顶点A1的坐标.
(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2,并直接写出顶点A2、的坐标.(4分)

manfen5.com 满分网 查看答案
化简求值:manfen5.com 满分网.其中a=1,b=-1.
查看答案
解下列方程:x(x-3)-2x+6=0.
查看答案
计算:manfen5.com 满分网
查看答案
解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2-4(2x+5)+3=0的解为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.