满分5 > 初中数学试题 >

如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的...

如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.
(1)求证:AC=CP;
(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).
(参考数据:manfen5.com 满分网,π=3.14)

manfen5.com 满分网
(1)连接OC.根据圆周角定理即可求得∠COP=2∠ACO=60°,根据切线的性质定理以及直角三角形的两个锐角互余,求得∠P=30°,即可证明; (2)阴影部分的面积即为Rt△OCP的面积减去扇形OCB的面积. (1)证明:连接OC. ∵AB是⊙O的直径, ∴AO=OC, ∴∠ACO=∠A=30°. ∴∠COP=2∠ACO=60°. ∵PC切⊙O于点C, ∴OC⊥PC. ∴∠P=30°. ∴∠A=∠P. ∴AC=PC. (2)【解析】 在Rt△OCP中,tan∠P=,∴OC=2 ∵S△OCP=CP•OC=×6×2=且S扇形COB=2π, ∴S阴影=S△OCP-S扇形COB=.
复制答案
考点分析:
相关试题推荐
某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客消费100元以上,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元,50元、20元的购物券(转盘被等分成20个扇形).
(1)顾客张吉祥消费120元,他获得购物券的概率是多少?
(2)他得到100元,50元、20元购物券的概率分别是多少?

manfen5.com 满分网 查看答案
为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
查看答案
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网 查看答案
如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-l),B(-5,-4),C(-5,-l)
(1)作出△ABC关于点O(0,0)中心对称的图形△A1B1C1,并直接写出顶点A1的坐标.
(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2,并直接写出顶点A2、的坐标.(4分)

manfen5.com 满分网 查看答案
化简求值:manfen5.com 满分网.其中a=1,b=-1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.