满分5 > 初中数学试题 >

如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺...

如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AB=4,AD:DC=1:3时,求DE的长.

manfen5.com 满分网
(1)由题意我们知道∠A+∠C=90°,那么我们只要通过全等三角形来得出∠BCE=∠A,就能得出∠DCE=90°的结论,那么关键就是证明三角形ADB和CBE全等,根据题意我们知三角形CBE是由三角形ABD旋转得来,根据旋转的性质我们可得出两三角形全等. (2)由(1)可得出三角形DEC是个直角三角形,要求DE的长,就必须求出CD和CE,由(1)可知AD=CE,那么就必须求出AD和DC的长,有AD,CD的比例关系,那么求出AC就是关键.直角三角形ABC中,AB=AC,有AB的长,进而可得AC的值. 【解析】 (1)∵△CBE是由△ABD旋转得到的, ∴△ABD≌△CBE, ∴∠A=∠BCE=45°, ∴∠DCE=∠DCB+∠BCE=90°. (2)在等腰直角三角形ABC中, ∵AB=4,∴AC=4, 又∵AD:DC=1:3, ∴AD=,DC=3. 由(1)知AD=CE且∠DCE=90°, ∴DE2=DC2+CE2=2+18=20, ∴DE=2.
复制答案
考点分析:
相关试题推荐
除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是否相等,并说明理由.
查看答案
小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长.(两个三角板分别是等腰直角三角形和含30°的直角三角形)
若已知CD=2,求AC的长.
请你先阅读并完成解法一,然后利用锐角三角函数的知识写出与解法一不同的解法.
解法一:在Rt△ABC中,∵BD=CD=2 
∴由勾股定理,BC=manfen5.com 满分网
在Rt△ABC中,设AB=x
∵∠BCA=30°,∴AC=2AB=2x
由勾股定理,AB2+BC2=AC2,即manfen5.com 满分网
∵x>0,解得x=______

manfen5.com 满分网 查看答案
已知抛物线的解析式y=x2-2x-3,请确定该抛物线的开口方向,对称轴和顶点坐标,并写出此抛物线与x轴交点的坐标.
查看答案
某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)

manfen5.com 满分网 查看答案
抛物线y=ax2与直线x=1,x=2,y=1,y=2组成的正方形有公共点,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.