满分5 > 初中数学试题 >

一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃: ①能从...

一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:
①能从任意一点(a,b),跳到点(2a,b)或(a,2b);
②对于点(a,b),如果a>b,则能从(a,b)跳到(a-b,b);如果a<b,则能从(a,b)跳到(a,b-a).
例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:
(1,1)→(2,1)→(4,1)→(3,1).
请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.
(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).
根据题目要求及两个规则,可以得到,a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数. 所以由规则①知,跳跃不改变前后两数的公共奇约数. 又由规则②知,跳跃不改变前后两数的最大公约数. 所以而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数. 由此可排除不能到达的点. 【解析】 (1)能到达点(3,5)和点(200,6). 从(1,1)出发到(3,5)的路径为: (1,1)→(2,1)→(4,1)→(3,1)→(3,2) →(3,4)→(3,8)→(3,5). 从(1,1)出发到(200,6)的路径为: (1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6) →(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6) →(160,6)→(320,6)→(前面的数反复减20次6)→(200,6); (2)不能到达点(12,60)和(200,5). 理由如下: ∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数, ∴由规则①知,跳跃不改变前后两数的公共奇约数. ∵如果a>b,a和b的最大公约数=(a-b)和b的最大公约数, 如果a<b,a和b的最大公约数=(b-a)和b的最大公约数, ∴由规则②知,跳跃不改变前后两数的最大公约数. 从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数. ∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5. ∴从(1,1)出发不可能到达给定点(12,60)和(200,5).
复制答案
考点分析:
相关试题推荐
设x1,x2,x3,…,x2006是整数,且满足下列条件:
①1≤xn≤2,n=1,2,3,…,2006;
②x1+x2+x3+…+x2006=200;
③x12+x22+x32+…+x20062=2006.
求x13+x23+x33+…+x20063的最小值和最大值.
查看答案
如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.
(1)求证:BF=2FP;
(2)设△ABC的面积为S,求△NEF的面积.

manfen5.com 满分网 查看答案
某列从上海到温州的火车,包括起始和终点在内共有6个停靠站,将这6个站按火车到达的先后次序,依次记为A,B,C,D,E,F.小张乘坐这趟列车从上海出发去温州,火车驶离上海时,小张发现他乘坐的车厢里连他自己在内共19名旅客,这些旅客小张都认识,其中有些是浙江人,其他的都是上海人.一路上小张观测到下列情况:①除了终点站,在每一站,当火车到达时这节车厢里浙江人的人数与下车旅客的人数相同,且这次行程中没有新的旅客进入这节车厢;②当火车离开车站B时,车厢里有12名旅客;当火车离开车站D时,还有7名旅客在这一车厢里;在F站下车的旅客包括小张在内共5人.
(1)火车驶离上海时,小张乘坐的这节车厢里共有多少浙江人?多少上海人?
(2)在B到C、C到D、D到E的旅途中,分别有多少浙江人?多少上海人?
查看答案
有一个英文单词由5个字母组成,如果将26个英文字母a,b,c,…,y,z按顺序依次对应0到25这26个整数,那么这个单词中的5个字母对应的整数按从左到右的顺序分别为x1,x2,x3,x4,x5.已知x1+3x2,4x2,x3+2x4,5x4,6x4+x5除以26所得的余数分别为15,6,20,9,9.则该英文单词是     查看答案
某商店出售A、B、C三种生日贺卡,已知A种贺卡每张0.5元,B种贺卡每张1元,C种贺卡每张2.5元.营业员统计3月份的经营情况如下:三种贺卡共售出150张,营业收入合计180元.则该商店3月份售出的C种贺卡至少有    张. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.