满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1...

已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)求出方程两根代入抛物线解析式即可; (2)设所求的解析式为y=kx+b,用待定系数法求解; (3)若△DEP为等腰直角三角形,应分情况进行讨论,需注意应符合两个条件:等腰,有直角. 【解析】 (1)由x2-2x-3=0,得x1=-1,x2=3. ∴A(-1,0),B(3,0),(1分) 把A,B两点的坐标分别代入 y=ax2+bx+2联立求解, 得a=-,b=.(2分) (2)由(1)可得y=-x2+x+2, ∵当x=0时,y=2, ∴C(0,2). 设AC:y=kx+b,把A,C两点坐标分别代入y=kx+b,联立求得k=2,b=2. ∴直线AC的解析式为y=2x+2.(3分) 同理可求得直线BC的解析式是y=-x+2.(4分) (3)假设存在满足条件的点P,并设直线y=m与y轴的交点为F(0,m). ①当DE为腰时,分别过点D,E作DP1⊥x轴于P1,作EP2⊥x轴于P2,如图, 则△P1DE和△P2ED都是等腰直角三角形,DE=DP1=FO=EP2=m,AB=x2-x1=4. ∵DE∥AB, ∴△CDE∽△CAB, ∴,即. 解得m=.(6分) ∴点D的纵坐标是, ∵点D在直线AC上, ∴2x+2=,解得x=-, ∴D(-,). ∴P1(-,0),同理可求P2(1,0).(8分) ②当DE为底边时, 过DE的中点G作GP3⊥x轴于点P3,如图, 则DG=EG=GP3=m, 由△CDE∽△CAB, 得,即, 解得m=1.(9分) 同1方法.求得D(-,1),E(,1), ∴DG=EG=GP3=1 ∴OP3=FG=FE-EG=, ∴P3(,0).(11分) 结合图形可知,P3D2=P3E2=2,ED2=4, ∴ED2=P3D2+P3E2, ∴△DEP3是Rt△, ∴P3(,0)也满足条件. 综上所述,满足条件的点P共有3个,即P1(-,0),P2(1,0),P3(,0).(12分)
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2-x+c经过点Q(-2,manfen5.com 满分网),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、manfen5.com 满分网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
查看答案
某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.
(1)求工程队A原来平均每天维修课桌的张数;
(2)求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.
查看答案
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
查看答案
如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.
(1)求直线和双曲线的函数关系式;
(2)求△CDO(其中O为原点)的面积.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.