满分5 > 初中数学试题 >

如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将O...

如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为manfen5.com 满分网的点P.

manfen5.com 满分网
(1)利用相似及相似比,可得到C的坐标.把A,B代入一次函数解析式即可求得解析式的坐标. (2)顶点落在x轴正半轴上说明此函数解析式与x轴有一个交点,那么△=0,再把B,C两点即可. (3)到直线AB的距离为的直线有两条,可求出这两条直线解析式,和二次函数解析式组成方程组,求得点P坐标. 【解析】 (1)过C点向x轴作垂线,垂足为D,由位似图形性质可知△ABO∽△ACD, ∴. 由已知A(-4,0),B(0,4)可知 AO=4,BO=4. ∴AD=CD=9, ∴C点坐标为(5,9), 设直线BC的解析式为y=kx+b, ∵A(-4,0),B(0,4)在一次函数解析式上,那么 -4k+b=0,b=4, 解得k=1, 化简得y=x+4; (2)设抛物线解析式为y=ax2+bx+c(a>0),由题意得, 解得,, ∴解得抛物线解析式为y1=x2-4x+4或y2=x2+x+4, 又∵y2=x2+x+4的顶点在x轴负半轴上,不合题意,故舍去. ∴满足条件的抛物线解析式为y=x2-4x+4, (准确画出函数y=x2-4x+4图象) (3)将直线BC绕B点旋转与抛物线相交于另一点P,设P到直线AB的距离为h, 故P点应在与直线AB平行,且相距的上下两条平行直线l1和l2上. 由平行线的性质可得 两条平行直线与y轴的交点到直线BC的距离也为. 如图,设l1与y轴交于E点,过E作EF⊥BC于F点, 在Rt△BEF中EF=h=,∠EBF=∠ABO=45°, ∴BE=6. ∴可以求得直线l1与y轴交点坐标为(0,10), 同理可求得直线l2与y轴交点坐标为(0,-2), ∴两直线解析式l1:y=x+10;l2:y=x-2. 根据题意列出方程组: (1);(2), 解得;;;, ∴满足条件的点P有四个, 它们分别是P1(6,16),P2(-1,9),P3(2,0),P4(3,1).
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=ax2-x+c经过点Q(-2,manfen5.com 满分网),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、manfen5.com 满分网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
查看答案
某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.
(1)求工程队A原来平均每天维修课桌的张数;
(2)求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.
查看答案
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
查看答案
如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.
(1)求直线和双曲线的函数关系式;
(2)求△CDO(其中O为原点)的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.