满分5 > 初中数学试题 >

如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,)两点...

如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,manfen5.com 满分网)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.
(1)求直线AB的解析式;
(2)若S梯形OBCD=manfen5.com 满分网,求点C的坐标;
(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)因为直线AB与x轴,y轴分别交于A(3,0),B(0,)两点,所以可设y=kx+b,将A、B的坐标代入,利用方程组即可求出答案; (2)因为点C为线段AB上的一动点,CD⊥x轴于点D,所以可设点C坐标为(x,x+),那么OD=x,CD=x+,利用梯形的面积公式可列出关于x的方程,解之即可,但要注意x的取值; (3)因为∠AOB=90°,所以以P,O,B为顶点的三角形与△OBA相似需分情况探讨: 当∠OBP=90°时,如图 ①若△BOP∽△OBA,则∠BOP=∠BAO=30°,BP=OB=3,P1(3,). ②若△BPO∽△OBA,则∠BPO=∠BAO=30°,OP=OB=1,P2(1,). ③过点P作OP⊥BC于点P,此时△PBO∽△OBA,∠BOP=∠BAO=30°,OP=BP,过点P作PM⊥OA于点M,∠OPM=30°,OM=OP,PM=OM,从而求得P的坐标. ④若△POB∽△OBA,则∠OBP=∠BAO=30°,∠POM=30°,所以PM=OM,P4(,);当∠POB=90°时,点P在x轴上,不符合要求. 【解析】 (1)设直线AB解析式为:y=kx+b, 把A,B的坐标代入得k=-,b= 所以直线AB的解析为:y=x+. (2)方法一:设点C坐标为(x,x+),那么OD=x,CD=x+. ∴S梯形OBCD==x. 由题意:x=, 解得x1=2,x2=4(舍去), ∴C(2,)(1分) 方法二:∵,S梯形OBCD=,∴. 由OA=OB,得∠BAO=30°,AD=CD. ∴S△ACD=CD×AD==.可得CD=. ∴AD=1,OD=2.∴C(2,). (3)当∠OBP=90°时,如图 ①若△BOP∽△BAO, 则∠BOP=∠BAO=30°,BP=OB=3, ∴P1(3,).(2分) ②若△BPO∽△BAO, 则∠BPO=∠BAO=30°,OP=OB=1. ∴P2(1,).(1分) 当∠OPB=90°时 ③过点P作OP⊥BA于点P(如图), 此时△PBO∽△OBA,∠BOP=∠BAO=30° 过点P作PM⊥OA于点M. 方法一:在Rt△PBO中,BP=OB=, OP=BP=. ∵在Rt△PMO中,∠OPM=30°, ∴OM=OP=;PM=OM=.∴P3(,). 方法二:设P(x,x+),得OM=x, PM=x+, 由∠BOP=∠BAO,得∠POM=∠ABO. ∵tan∠POM==,tan∠ABO==. ∴x+=x,解得x=.此时P3(,). ④若△POB∽△OBA(如图), 则∠OBP=∠BAO=30°,∠POM=30度. ∴PM=OM=. ∴P4(,)(由对称性也可得到点P4的坐标). 当∠POB=90°时,点P在x轴上,不符合要求. 综合得,符合条件的点有四个,分别是:P1(3,),P2(1,),P3(,),P4(,).
复制答案
考点分析:
相关试题推荐
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为manfen5.com 满分网的点P.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=ax2-x+c经过点Q(-2,manfen5.com 满分网),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、manfen5.com 满分网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
查看答案
某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.
(1)求工程队A原来平均每天维修课桌的张数;
(2)求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.
查看答案
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.