满分5 > 初中数学试题 >

如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC...

如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是    °.
manfen5.com 满分网
根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数. 【解析】 过C作AP的垂线CD,垂足为点D.连接BD; ∵△PCD中,∠APC=60°, ∴∠DCP=30°,PC=2PD, ∵PC=2PB, ∴BP=PD, ∴△BPD是等腰三角形,∠BDP=∠DBP=30°, ∵∠ABP=45°, ∴∠ABD=15°, ∵∠BAP=∠APC-∠ABC=60°-45°=15°, ∴∠ABD=∠BAD=15°, ∴BD=AD, ∵∠DBP=45°-15°=30°,∠DCP=30°, ∴BD=DC, ∴△BDC是等腰三角形, ∵BD=AD, ∴AD=DC, ∵∠CDA=90°, ∴∠ACD=45°, ∴∠ACB=∠DCP+∠ACD=75°, 故答案为:75.
复制答案
考点分析:
相关试题推荐
如图,∠BAD=∠BDA=15°,∠CAD=45°,∠CDA=30°,试判断三角形ABC的形状,并说明理由.

manfen5.com 满分网 查看答案
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
manfen5.com 满分网
查看答案
如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,manfen5.com 满分网)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.
(1)求直线AB的解析式;
(2)若S梯形OBCD=manfen5.com 满分网,求点C的坐标;
(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为manfen5.com 满分网的点P.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.