满分5 > 初中数学试题 >

已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数. (1)求...

已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网
(1)综合根的判别式及k的要求求出k的取值; (2)对k的取值进行一一验证,求出符合要求的k值,再结合抛物线平移的规律写出其平移后的解析式; (3)求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A、B时的b的取值,进而求出其取值范围.本题第二问是难点,主要是不会借助计算淘汰不合题意的k值. 【解析】 (1)由题意得,△=16-8(k-1)≥0. ∴k≤3. ∵k为正整数, ∴k=1,2,3; (2)设方程2x2+4x+k-1=0的两根为x1,x2,则 x1+x2=-2,x1•x2=. 当k=1时,方程2x2+4x+k-1=0有一个根为零; 当k=2时,x1•x2=,方程2x2+4x+k-1=0没有两个不同的非零整数根; 当k=3时,方程2x2+4x+k-1=0有两个相同的非零实数根-1. 综上所述,k=1和k=2不合题意,舍去,k=3符合题意. 当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位得到的图象的解析式为y=2x2+4x-6; (3)设二次函数y=2x2+4x-6的图象与x轴交于A、B两点,则A(-3,0),B(1,0). 依题意翻折后的图象如图所示. 当直线y=x+b经过A点时,可得b=; 当直线y=x+b经过B点时,可得b=-. 由图象可知,符合题意的b(b<3)的取值范围为<b<. (3)依图象得,要图象y=x+b(b小于k)与二次函数图象有两个公共点时,显然有两段. 而因式分解得y=2x2+4x-6=2(x-1)(x+3), 第一段,当y=x+b过(1,0)时,有一个交点,此时b=-. 当y=x+b过(-3,0)时,有三个交点,此时b=.而在此中间即为两个交点,此时-<b<. 第二段,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折后, 开口向下的部分的函数解析式为y=-2(x-1)(x+3). 显然, 当y=x+b与y=-2(x-1)(x+3)(-3<x<1)相切时,y=x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点. 因为b<3,而y=x+b(b小于k,k=3),所以当b=3时,将y=x+3代入二次函数y=-2(x-1)(x+3)整理得, 4x2+9x-6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合的二次函数图象相交只有两个公共点.这种情况故舍去. 综上,-<b<.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是    °.
manfen5.com 满分网 查看答案
如图,∠BAD=∠BDA=15°,∠CAD=45°,∠CDA=30°,试判断三角形ABC的形状,并说明理由.

manfen5.com 满分网 查看答案
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
manfen5.com 满分网
查看答案
如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,manfen5.com 满分网)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.
(1)求直线AB的解析式;
(2)若S梯形OBCD=manfen5.com 满分网,求点C的坐标;
(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.