满分5 >
初中数学试题 >
已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是( ) A.0...
已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是( )
A.0.6
B.0.75
C.0.8
D.
考点分析:
相关试题推荐
已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P( )
A.在⊙O外
B.在⊙O上
C.在⊙O内
D.不能确定
查看答案
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.
(1)若取AE的中点P,求证:BP=
CF;
(2)在图①中,若将△BEF绕点B顺时针方向旋转α(0°<α<360°),如图②,是否存在某位置,使得AE∥BF?,若存在,求出所有可能的旋转角α的大小;若不存在,请说明理由;
(3)在图①中,若将△BEF绕点B顺时针旋转α(0°<α<90°),如图③,取AE的中点P,连接BP、CF,求证:BP=
CF且BP⊥CF.
查看答案
如图所示,抛物线y=ax
2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+b
1与两坐标轴分别交于A、D两点,与抛物线交于B(1,3)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),求△PON的面积最大值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△POD面积的
?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案
如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.
(1)求证:MN是⊙O的切线;
(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.
查看答案
小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.
(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;
(2)求一个回合能确定两人先上场的概率.
查看答案