满分5 > 初中数学试题 >

已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴...

已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数manfen5.com 满分网(k>0)的图象与AC边交于点E.
(1)求证:△AOE与△BOF的面积相等;
(2)记S=S△OEF-S△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)分别用点E,F的坐标表示出△AOE与△FOB的面积,进行比较; (2)应分别用矩形面积和能用图中的点表示出的三角形的面积表示出所求的面积,利用二次函数求出最值即可; (3)点F的横坐标已有,与点B的横坐标相同,利用折叠以及相似求得点F的纵坐标. (1)证明:设E(x1,y1),F(x2,y2),△AOE与△FOB的面积分别为S1,S2, 由题意得y1=,y2=, ∴S1=x1y1=k,S2=x2y2=k, ∴S1=S2, 即△AOE与△FOB的面积相等; (2)【解析】 由题意知E,F两点坐标分别为E(,3),F(4,), ∴S△ECF=EC•CF=(4-k)(3-k), ∴S△EOF=S矩形AOBC-S△AOE-S△BOF-S△ECF =12-k-k-S△ECF =12-k-S△ECF ∴S=S△OEF-S△ECF=12-k-2S△ECF=12-k-2×(4-k)(3-k). ∴S=-k2+k,即S=-(k-6)2+3, 当k=6时,S有最大值. S最大值=3; (3)【解析】 设存在这样的点F,将△CEF沿EF对折后,C点恰好落在OB边上的M点, 过点E作EN⊥OB,垂足为N. 由题意得:EN=AO=3,EM=EC=4-k,MF=CF=3-k, ∵∠EMN+∠FMB=∠FMB+∠MFB=90°, ∴∠EMN=∠MFB. 又∵∠ENM=∠MBF=90°, ∴△EMN∽△MFB. ∴, ∴, ∴MB=. ∵MB2+BF2=MF2, ∴,解得k=. ∴BF=. ∴存在符合条件的点F,它的坐标为(4,).
复制答案
考点分析:
相关试题推荐
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.
(1)求证:△ACD≌△BCE;
(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.

manfen5.com 满分网 查看答案
下列材料来自2006年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:
manfen5.com 满分网
求:
①写出2005年民众安全感满意度的众数选项是______
②该统计表存在一个明显的错误是______
③若记很安全,安全,基本安全,不安全,很不安全每项分值分别为100,80,60,40,0,请估计2005年该市民众安全感满意度的平均得分.
查看答案
先化简,再求值:manfen5.com 满分网,其中a=-5.
查看答案
按如下程序进行运算:
manfen5.com 满分网
并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是    查看答案
如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.