满分5 > 初中数学试题 >

如图,直线y=-x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A...

如图,直线y=-manfen5.com 满分网x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0).
(1)求该二次函数的关系式;
(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;
(3)有两动点D、E同时从点O出发,其中点D以每秒manfen5.com 满分网个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S.
①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S是②中函数S的最大值,那么S=______

manfen5.com 满分网
(1)先根据直线AC的解析式求出A、C两点的坐标,然后根据A、B、C三点的坐标用待定系数法即可求出抛物线的解析式. (2)根据抛物线的解析式可求出M点的坐标,由于四边形OAMC不是规则的四边形,因此可过M作x轴的垂线,将四边形OAMC分成一个直角三角形和一个直角梯形来求解. (3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t. ②本题要分三种情况进行讨论: 当E在OC上,D在OA上,即当0<t≤1时,此时S=OE•OD,由此可得出关于S,t的函数关系式; 当E在CA上,D在OA上,即当1<t≤2时,此时S=OD×E点的纵坐标.由此可得出关于S,t的函数关系式; 当E,D都在CA上时,即当2<t<相遇时用的时间,此时S=S△AOE-S△AOD,由此可得出S,t的函数关系式; 综上所述,可得出不同的t的取值范围内,函数的不同表达式. ③根据②的函数即可得出S的最大值. 【解析】 (1)令y=0,则x=3, ∴A(3,0),C(0,4), ∵二次函数的图象过点C(0,4), ∴可设二次函数的关系式为y=ax2+bx+4. 又∵该函数图象过点A(3,0),B(-1,0), ∴, 解得a=-,b=. ∴所求二次函数的关系式为y=-x2+x+4. (2)∵y=-x2+x+4 =-(x-1)2+ ∴顶点M的坐标为(1,) 过点M作MF⊥x轴于F ∴S四边形AOCM=S△AFM+S梯形FOCM =×(3-1)×+×(4+)×1 =10 ∴四边形AOCM的面积为10. (3)①不存在DE∥OC ∵若DE∥OC,则点D,E应分别在线段OA,CA上,此时1<t<2,在Rt△AOC中,AC=5. 设点E的坐标为(x1,y1) ∴=, ∴ ∵DE∥OC, ∴ ∴ ∵t=>2,不满足1<t<2. ∴不存在DE∥OC. ②根据题意得D,E两点相遇的时间为(秒) 现分情况讨论如下: (ⅰ)当0<t≤1时,S=×t•4t=3t2; (ⅱ)当1<t≤2时,设点E的坐标为(x2,y2) ∴, ∴ ∴S=×t×=-t2+t; (ⅲ)当2<t<时, 设点E的坐标为(x3,y3),类似ⅱ可得 设点D的坐标为(x4,y4) ∴, ∴ ∴S=S△AOE-S△AOD =×3×-×3× =-t+. ③当0<t≤1时,S=×t•4t=3t2,函数的最大值是3; 当1<t≤2时,S=-t2+t.函数的最大值是:, 当2<t<时,S=-t+,0<S<. ∴S=.
复制答案
考点分析:
相关试题推荐
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.

manfen5.com 满分网 查看答案
小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
朝上的点数123456
出现的次数79682010
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
查看答案
已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=manfen5.com 满分网的图象上,点D的坐标为(0,-2).
(1)求反比例函数的解析式;
(2)若过B,D的直线与x轴交于点C,求sin∠DCO的值.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.