如图,直线y=-
x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0).
(1)求该二次函数的关系式;
(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;
(3)有两动点D、E同时从点O出发,其中点D以每秒
个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S.
①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S
是②中函数S的最大值,那么S
=______.
考点分析:
相关试题推荐
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.
查看答案
小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
查看答案
已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=
的图象上,点D的坐标为(0,-2).
(1)求反比例函数的解析式;
(2)若过B,D的直线与x轴交于点C,求sin∠DCO的值.
查看答案