如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α=______度时,点P到CD的距离最小,最小值为______.
探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=______度,此时点N到CD的距离是______.
探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=
,cos41°=
,tan37°=
.)
考点分析:
相关试题推荐
已知二次函数y
1=x
2-2x-3.
(1)结合函数y
1的图象,确定当x取什么值时,y
1>0,y
1=0,y
1<0;
(2)根据(1)的结论,确定函数y
2=
(|y
1|-y
1)关于x的解析式;
(3)若一次函数y=kx+b(k≠0)的图象与函数y
2的图象交于三个不同的点,试确定实数k与b应满足的条件?
查看答案
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.
(1)求证:CD与⊙O相切;
(2)若⊙O的半径为1,求正方形ABCD的边长.
查看答案
一自动喷灌设备的喷流情况如图所示,设水管AB在高出地面1.5米的B处有一自动旋转的喷水头,一瞬间流出的水流是抛物线状,喷头B与水流最高点C连线成45°角,水流最高点C比喷头高2米,求水流落点D到A点的距离.
查看答案
如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
查看答案
已知关于x的方程kx
2-x+1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)设x
1、x
2是此方程的两个实数根,且满足
,求k的值.
查看答案