满分5 >
初中数学试题 >
把一个正方形绕对角线的交点旋转到与原来重合,至少需转动( ) A.45° B.6...
把一个正方形绕对角线的交点旋转到与原来重合,至少需转动( )
A.45°
B.60°
C.90°
D.180°
考点分析:
相关试题推荐
随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是( )
A.
B.
C.
D.
查看答案
使
有意义的x的取值范围是( )
A.
B.
C.
D.
查看答案
在下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
查看答案
如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.
查看答案
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
查看答案