要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.
【解析】
由题意知,底面圆的直径为2r,故底面周长等于2rπ,
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得,2rπ=,
解得n=120,
所以展开图中扇形的圆心角为120°,
∴∠AOA′=120°,
∴∠1=60°,
过C作CF⊥OA,
∵C为OB中点,BO=3r,
∴OC=r,
∵∠1=60°,
∴∠OCF=30°,
∴FO=r,
∴CF2=CO2-OF2=r2,
∵AO=3r,FO=r,
∴AF=r,
∴AC2=AF2+FC2=r2+r2═r2,
∴AC=,
故选B.