由a2+b2+c2=16,a4+b4+c4=96,根据(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2,即可求得2a2b2+2b2c2+2a2c2的值,又由s(s-a)(s-b)(s-c)=(a+b+c)•(b+c-a)•(a+c-b)•(a+b-c)=[(2a2b2+2b2c2+2a2c2)-(a4+b4+c4)],整体代入即可求得S△ABC的值.
【解析】
∵a2+b2+c2=16,a4+b4+c4=96,
又∵(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2,
即162=96+(2a2b2+2b2c2+2a2c2),
∴2a2b2+2b2c2+2a2c2=160,
∵s=(a+b+c),
∴s(s-a)(s-b)(s-c)=(a+b+c)•(b+c-a)•(a+c-b)•(a+b-c)=[(2a2b2+2b2c2+2a2c2)-(a4+b4+c4)]=×(160-96)=4,
∴S△ABC===2.
故答案为:2.