满分5 > 初中数学试题 >

二次函数y=-x2+bx+c,若b+c=0,则它的图象一定过点( ) A.(-1...

二次函数y=-x2+bx+c,若b+c=0,则它的图象一定过点( )
A.(-1,1)
B.(1,-1)
C.(-1,-1)
D.(1,1)
分析解析式与方程可知:x=1时可得到b+c的形式,再根据x=1时y的值进行求解. 【解析】 ∵当x=1时, ∴y=-x2+bx+c =-1+b+c 即b+c=y+1, 又∵b+c=0, ∴x=1时y=-1, 故它的图象一定过点(1,-1). 故选B.
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2+kx+k-2.
(1)求证:不论k为任何实数,抛物线与x轴总有两个交点;
(2)若反比例函数manfen5.com 满分网的图象与manfen5.com 满分网的图象关于y轴对称,又与抛物线交于点A(n,-3),求抛物线的解析式;
(3)若点P是(2)中抛物线上的一点,且点P到两坐标轴的距离相等,求点P的坐标.
查看答案
已知抛物线C1:y=x2-(2m+4)x+m2-10的顶点A到y轴的距离为3,与x轴交于C、D两点.
(1)求顶点A的坐标;
(2)若点B在抛物线C1上,且manfen5.com 满分网,求点B的坐标.
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

manfen5.com 满分网 查看答案
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
查看答案
已知二次函数y=x2+4x+3.
(1)用配方法将y=x2+4x+3化成y=a(x-h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.