满分5 > 初中数学试题 >

如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶...

如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网
(1)将A的坐标代入抛物线y=a(x-1)2+3(a≠0)可得a的值,即可得到抛物线的解析式; (2)易得D的坐标,过D作DN⊥OB于N;进而可得DN、AN、AD的长,根据平行四边形,直角梯形,等腰梯形的性质,用t将其中的关系表示出来,并求解可得答案; (3)根据(2)的结论,易得△OCB是等边三角形,可得BQ、PE关于t的关系式,将四边形的面积用t表示出来,进而分析可得最小值及此时t的值,进而可求得PQ的长. 【解析】 (1)∵抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0), ∴0=9a+3, ∴a=-(1分) ∴二次函数的解析式为:y=-x2+x+;(3分) (2)①∵D为抛物线的顶点, ∴D(1,3), 过D作DN⊥OB于N,则DN=3,AN=3, ∴AD==6, ∴∠DAO=60°.(4分) ∵OM∥AD, ①当AD=OP时,四边形DAOP是平行四边形, ∴OP=6, ∴t=6(s).(5分) ②当DP⊥OM时,四边形DAOP是直角梯形, 过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1) ∴OP=DH=5,t=5(s)(6分) ③当PD=OA时,四边形DAOP是等腰梯形, 易证:△AOH≌△DPP′, ∴AH=CP, ∴OP=AD-2AH=6-2=4, ∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分) (3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t, ∴OQ=6-2t(0<t<3)过P作PE⊥OQ于E, 则PE=t(8分) ∴SBCPQ=×6×3×(6-2t)×t =(t-)2+(9分) 当t=时,四边形BCPQ的面积最小值为.(10分) ∴此时OQ=3,OP=,OE=; ∴QE=3-=,PE=, ∴PQ=.(11分)
复制答案
考点分析:
相关试题推荐
已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连接FC.(AB>AE).
(1)△AEF与△ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;
(2)设manfen5.com 满分网,是否存在这样的k值,使得△AEF与△BFC相似?若存在,证明你的结论并求出k的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中manfen5.com 满分网上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,某港口有一灯塔A,灯塔A的正东有B、C两灯塔,以BC为直径的半圆区域内有若干暗礁,BC=18海里,一船在M处测得灯塔A、C分别在船的南偏西60°和南偏西15°方向,船沿MA方向行驶6海里恰好处在灯塔C的正北方向N处.
(1)求CN的长(精确到0.1海里);
(2)若船继续沿MA方向朝A行驶,是否有触礁的危险?
(参考数值:manfen5.com 满分网=1.414,manfen5.com 满分网=1.732,sin15°=0.2588,cos15°=0.9658,tan15°=0.2680,cot15°=3.732)

manfen5.com 满分网 查看答案
用大小两种箱子包装720件产品,有三种包装方案:
方案一:产品的一半用大箱装,一半用小箱装,要用75只箱子;
方案二:产品manfen5.com 满分网用大箱装,其余用小箱装;
方案三:产品manfen5.com 满分网用大箱装,其余用小箱装,那么比“方案一”少用5只箱子.
如果每只大箱子的包装费比每只小箱子的包装费高k%,试确定选择哪种包装方案能使包装费用最低?
查看答案
阅读下列材料:
一般地,n个相同的因数a相乘manfen5.com 满分网记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24=______,log216=______,log264=______
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
logaM+logaN=______;(a>0且a≠1,M>0,N>0)
(4)根据幂的运算法则:an•am=an+m以及对数的含义证明上述结论.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.