满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB....

如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)

manfen5.com 满分网
(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可. (2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解. 【解析】 (1)直线CD与⊙O相切.理由如下: 如图,连接OD ∵OA=OD,∠DAB=45°, ∴∠ODA=45° ∴∠AOD=90° ∵CD∥AB ∴∠ODC=∠AOD=90°,即OD⊥CD 又∵点D在⊙O上,∴直线CD与⊙O相切;(4分) (2)∵⊙O的半径为1,AB是⊙O的直径, ∴AB=2, ∵BC∥AD,CD∥AB ∴四边形ABCD是平行四边形 ∴CD=AB=2 ∴S梯形OBCD===; ∴图中阴影部分的面积等于S梯形OBCD-S扇形OBD=-×π×12=-.(8分)
复制答案
考点分析:
相关试题推荐
用总长为60m的篱笆围成一个矩形场地,使矩形面积为200m2,求怎样围成这样的矩形.
查看答案
如图,已知⊙O是边长为2的等边△ABC的内切圆,求⊙O的面积.

manfen5.com 满分网 查看答案
如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).
(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1
(2)点A1的坐标为______
(3)四边形AOA1B1的面积为______

manfen5.com 满分网 查看答案
关于x的方程为x2+(m+2)x+2m-1=0.
(1)证明:方程有两个不相等的实数根.
(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.
查看答案
现有A、B、C、D四套数学试卷,
(1)如果其中只有一套是中考后备题的,某位同学随意选了其中一套试卷,他选中中考后备题的概率是多少?
(2)如果其中有两套是后备题,某位同学随意选了其中两套,他全部选中中考后备题的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.