9的算术平方根是( )
A.±3
B.3
C.-3
D.
考点分析:
相关试题推荐
如图,抛物线y=
x
2+3与x轴交于点A,点B,与直线y=
x+b相交于点B,点C,直线y=
x+b与y轴交于点E.
(1)写出直线BC的解析式.
(2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
查看答案
如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,AB=8,求⊙O直径的长.
查看答案
如图,已知E是平行四边形ABCD的BC边延长线上一点,AE交CD于F,CE=
BC.
(1)求证:△ECF∽△ADF;
(2)S
△ADF:S
△CEF的值.
查看答案
如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过
秒,四边形APQC的面积最小.
查看答案
已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由.
(2)若∠ACD=45°,OC=2,求弦AD的长.
查看答案